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ABSTRACT

In the field of high-resolution measurement and manufacturing, effective anti-vibration measures are required to obtain
precise and repeatable results. This is particularly true for experiments or processes where the typical amplitudes of the
ambient vibration and the dimensions of the investigated or manufactured structures fall in the same range, e.g. submicron
semiconductor production, holographic interferometry, confocal optical imaging, and scanning probe microscopy. In the
active vibration isolation system examined, signals are acquired by extremely sensitive vibration detectors, and the vibration
is reduced using either local analog feedback control or digital model-based control to drive electrodynamic actuators.
This papers deals with the modelling and control techniques of such an active vibration isolation system. The modelling,
parameter identification, and model updating procedure are described. The experimental setup for testing such an anti-
vibration system is described, and the measured transmissibility curves for the passive and active system being driven by
local analog feedback controllers are provided. Finally, the simulated transmissibility curves of the passive system and the
active system using a decentralized digital loop shaping controller and a centralized model based controller are given and
the results are discussed.

1 Introduction

Isolating a piece of delicate equipment from the vibration of a base structure is of practical importance in a number of
engineering fields. For instance, in industry and research the quest for tighter production tolerance and higher resolution
places stringent requirements on the environment. In the majority of cases, the base is flexible and vibrates with an
unpredictable waveform which has a broadband spectrum. The active isolation of vibration sensitive equipment from a
vibrating base is studied in this paper. Passive anti-vibration mounts are widely used to support the equipment and protect
it from severe base vibration. However, conventional passive mounts suffer from the inherent trade-off between poor high
frequency isolation and amplification of vibration at the fundamental mounted resonance frequency. Generally the best
isolation performance is achieved by using an active system in combination with a passive mount, where the fundamental
resonance can be actively controlled without reducing the high frequency performance.

Fuller et al. [2] gives a deep understanding and background in the field of active isolation of vibrations. Various control
strategies are discussed including feedforward and feedback concepts for systems under periodic as well as random vibrations.

Stöbener and Gaul [10] and Hurlebaus [5] modeled a piezoelectric stack actuator with finite elements in order to describe
the behavior of a one degree of freedom vibration isolation system. To validate the FE formulation and to evaluate the
performance of the vibration isolation system with the stack actuator, they designed and tested an experimental setup.
They examined both feedforward control as well as feedback control techniques to enhance the isolation effect. Huang
et al. [4] presented a theoretical and experimental investigation of an active vibration isolation system. In that study, a
decentralized velocity feedback control was employed, whereby each electrodynamic actuator is operated independently by
feeding back the absolute equipment velocity at the same location. They obtained good control and robust stability both
experimentally and theoretically for the multichannel control systems.

Preumont et al. [6, 7] compared the force feedback and acceleration feedback implementation of a sky hook damper used
to isolate a flexible structure from a disturbance source. They showed that the use of a force sensor always produces
alternating poles and zeros in the open-loop transfer function between the force actuator and the force sensor, which
guarantees stability of the closed loop. On the contrary, the acceleration feedback produces alternating poles and zeros
only when the flexible structure is stiff compared to the isolation system.



Riebe and Ulbrich [8] presented the model of a parallel robot with six degrees of freedom for the use in real time computation
of the inverse dynamic. They modeled the frictional behavior, and the parameters describing the friction model are identified
and optimized. Furthermore, they presented a comparison between the measured and the simulated actuation forces.

This paper investigates a four mount six degrees of freedom system for active vibration isolation and suppression. The
system itself is based on a decentralized analog velocity feedback controller. Fig. 1 depicts the examined active vibration
isolation system. The experimental setup for measuring the transmissibility curve is described in the first section. Then the
system is modeled using the balance of linear and angular momentum. This leads to the governing equations of motion.
The parameters necessary to describe the system’s behavior are identified, and the parameters are then optimized by model
updating. A comparison between the updated model and the measurements show good agreement. Next, some control
concepts are described, and the simulated transmissibility curves are presented. The simulation show that the global digital
control technique has great potential for enhancing the isolation performance of the system.

Figure 1: Active vibration isolation system.

2 Experimental Setup

This section describes the experimental setup for measuring the performance of the isolation systems. As shown in Fig. 2,
the setup consists of a heavy base plate which is suspended on six springs. In order to minimize the interaction between
the vibration isolation system and the spring-mass-system of the experimental setup, the mass of the base plate (2 t)
is chosen to be much larger than the mass of the vibration isolation system (30 kg). The isolation performance can be
determined by constructing a transmissibility curve. Transmissibility is simply the response of the isolation system divided
by the excitation (in the frequency domain), where the response and excitation have been measured with accelerometers.
The excitation of the base plate is realized using a conventional loudspeaker which is connected to the base plate via a
stinger. The output from the function generator is first amplified using a conventional HIFI amplifier before being used
to drive the loudspeaker. The rigid body eigenfrequencies of the spring supported base plate are between 1.44 and 2.88
Hz. Fig. 3 depicts the measured transmissibility curves for the passive and active isolation systems, respectively. Here, the
active system is realized using a decentralized analog feedback controller. It is seen that almost over the entire frequency
range a significant reduction in the transmissibillity curve is obtained using the active system. At frequencies above 40 Hz,
noise appears in both curves. This is due to the dynamic behavior of the actuators.

3 Modelling

The modeling of the vibration isolation system is restricted to three degrees of freedom. The possible movement is a
translation in vertical direction (z-direction), as well as rotation about the other axes (x- and y-axis). Further assumptions
are made for the modeling of the system:

1. The displacement is small compared to system dimensions.

2. The spring force is linear around the working point.
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Figure 2: Experimental setup for testing of the active
vibration isolation system.

10
0

10
1

−50

−40

−30

−20

−10

0

10

20

frequency f [Hz]

active

passive

tr
an

sm
is
si
b
ili

ty
[d

B
]

Figure 3: Measured vertical transmissibility curves for
the passive and active vibration isolation system.

3. The upper plate on the vibration isolation system is a rigid body.

During operation, the vibration amplitudes of the vibration isolation system are smaller than 1 to 2 mm. Since the important
system dimensions, L1 = 348mm, L2 = 300mm, a = 55mm are large by comparison assumption (1) is justified (Fig. 4).

3.1 Coordinate System

In order to describe the behavior of the vibration isolation system, it is necessary to introduce a set of coordinate systems
and the relationships among the various coordinates. In the upper left corner of Fig. 4, the inertial coordinate system is
shown. The coordinates di represent the excitation displacement of the legs of the vibration isolation system, and the
coordinates zi represent the absolute displacement of the points on the upper plate where the springs are attached. It is
assumed that zi and di are zero at equilibrium. The coordinates d�

i and z�
i represent excitation displacement of the system

and the absolute displacement of the upper plate, respectively, at the locations of the actuators. The coordinates denoted
with the subscript c characterize a space-fixed coordinate system, whose origin is at the center of mass of the piece of
equipment being isolated. It is assumed that the zc-axis intersects the centroid of the upper plate, so that symmetry can
be assumed. The coordinates zc, ϕcx, and ϕcy fully describe the state of the system and are taken as the generalized
coordinates.

The relationship between the generalized coordinate zc and the absolute displacements zi can be stated as

zc =
1
4
(z1 + z2 + z3 + z4) . (1)

Assuming small angles ϕcx, ϕcy << 1 one obtains

ϕcx =
1

2L2
[(z4 − z1) + (z3 − z2)] (2)

ϕcy =
1

2L1
[(z1 − z2) + (z4 − z3)] . (3)

Under the assumption of small displacements the absolute displacement are constrained by

z1 + z3 = z4 + z2 . (4)
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Figure 4: Coordinate systems.

Solving Equations (1) to (4), in terms of zi, i = 1, ..., 4 gives

z1 = zc − 1
2
ϕcxL2 +

1
2
ϕcyL1 (5)

z2 = zc − 1
2
ϕcxL2 − 1

2
ϕcyL1 (6)

z3 = zc +
1
2
ϕcxL2 − 1

2
ϕcyL1 (7)

z4 = zc +
1
2
ϕcyL1 +

1
2
ϕcxL2 . (8)

The absolute displacement zi and z�
i are related as

z�
1 = z1

(
1 − a

L1

)
+ z2

a

L1
(9)

z�
2 = z1

a

L1
+ z2

(
1 − a

L1

)
(10)

z�
3 = z4

a

L1
+ z3

(
1 − a

L1

)
(11)

z�
4 = z4

(
1 − a

L1

)
+ z3

a

L1
. (12)

An identical set of relations relate the displacements d�
i and di on the lower plate, which is also modeled as rigid body.

3.2 Free Body Diagram

As previous stated only the forces required to describe the dynamics of the systems are considered here. The static weighting
force of the upper plate is therefore neglected. The constitutive equation for the dynamic forces fi can be written as

fi = −k(zi − di) . (13)

The equations for the actuator forces Fi are

Fi = −ka(z�
i − d�

i ) − Da(ż�
i − ḋ�

i ) + ui, i = 1, . . . , 4 (14)
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Figure 5: Free body diagram.

where ka is the actuator spring constant, Da is the damping parameter, and ui is the actuator excitation force. Note, that
the actuator forces can act in positive as well as in negative direction.

3.3 Balance of Linear and Angular Momentum

Applying the balance of linear momentum to the upper plate gives

mz̈c =
4∑

i=1

(fi + Fi) , (15)

where m is the plate mass. Substituting Equations (13) and (14) into (15) gives

mz̈c =
4∑

i=1

[
−k(zi − di) − ka(z�

i − d�
i ) − Da(ż�

i − ḋ�
i ) + ui

]
. (16)

The balance of angular momentum with respect to the center of mass of the upper plate gives

Mc = Jcϕ̈ (17)

with

Mc =
(

M c
x

M c
y

)
, Jc =

[
Jxx 0
0 Jyy

]
, and ϕ =

(
ϕcx

ϕcy

)
. (18)

Hence Mc is the vector of moments with respect to the center of mass, Jc is the moment of inertia with respect to the
center of mass, and ϕ is the corresponding rotational vector. The moments can be obtained by considering the free body
diagram, Fig. 5,

M c
x = −L2

2
(f1 + f2 + F1 + F2) +

L2

2
(f3 + f4 + F3 + F4)

M c
y =

L1

2
(f1 + f4) − L1

2
(f2 + f3) +

(
L1

2
− a

)
(F1 + F4) −

(
L1

2
− a

)
(F2 + F3) (19)

By implementing the relations for the forces equations (13) and (14) into the moment equation (19) and subsequently
implementing these into the equation of angular momentum (17) leads together with the balance of linear momentum
(16) to the governing equation of motion

M¨̃x + D ˙̃x + Kx̃ = Fu u + Fd d + Fdd ḋ , (20)



where

M =

[
m 0 0
0 Jxx 0
0 0 Jyy

]
(21)

is the mass matrix,

D =

⎡
⎣ 4Da 0 0

0 DaL
2
2 0

0 0 Da(L2
1 − 4L1a + 4a2)

⎤
⎦ (22)

is the damping matix

K =

⎡
⎣ 4(k + ka) 0 0

0 L2
2(k + ka) 0

0 0 L2
1k + (−4L1a + 4a2 + L2

1)ka

⎤
⎦ (23)

is the stiffness matrix,

Fu =

⎡
⎣ 1 1 1 1

− 1
2L2 − 1

2L2
1
2L2

1
2L2

−a + 1
2L1 a − 1

2L1 a − 1
2L1 −a + 1

2L1

⎤
⎦ (24)

is the control matrix, and the matrices

Fd =

[ k + ka k + ka

− 1
2L2(k + ka) − 1

2L2(k + ka)
1

2L1
(−4L1kaa + 4kaa

2 + kaL
2
1 + L2

1k) 1
2L1

(−kaL
2
1 + 4L1kaa − L2

1k − 4kaa
2)

k + ka k + ka
1
2L2(k + ka) 1

2L2(k + ka)
1

2L1
(4L1kaa − kaL

2
1 − L2

1k − 4kaa
2) 1

2L1
(−4L1kaa + 4kaa

2 + kaL
2
1 + L2

1k)

] (25)

and

Fdd =

⎡
⎣ Da Da Da Da

− 1
2L2Da − 1

2L2Da
1
2L2Da

1
2L2Da

Da
2L1

(L2
1 + 4a2 − 4L1a) Da

2L1
(4L1a − 4a2 − L2

1)
Da
2L1

(4L1a − 4a2 − L2
1)

Da
2L1

(L2
1 + 4a2 − 4L1a)

⎤
⎦
(26)

describe the disturbance of the upper plate. The vector x̃ = [zc, ϕcx, ϕcy]T represents the general coordinates, u =
[u1, u2, u3, u4]

T
is the control input, and d = [d1, d2, d3, d4]

T
is the vector of the displacement disturbances which are

introduced at the lower plate.

4 Parameter Identification

This section describes the identification of the system parameters, e.g. the geometry, mass, spring characteristic, electrody-
namic actuator characteristics and the moments of inertia. Without well-identified parameters, it is impossible to simulate
the system, and therefore new control techniques cannot be examined.

4.1 Geometry and Mass

The side length of the upper square plate is 404 mm, and its thickness is 25 mm. The distance between the springs in
x- and y-directions are L1 = 348 mm and L2 = 300 mm, respectively, and the distance between the actuators and the
springs is a = 55 mm.
The mass of the isolation system consists of the mass of upper plate, the mass of the sensor-actuator units and one half
of the spring masses which support the upper plate. The total mass of these parts is msys = 19.274 kg.



4.2 Spring Characteristic

For the determination of the spring characteristic, a spring is loaded by different masses, and the applied force is plotted as
a function of displacement. The force-displacement characteristic is depicted in Fig. 6 along with a linear interpolation and
a spline curve fit to the data. It can be seen that the relation between the restoring force and the displacement is nonlinear.
The dependency between the spring characteristic and the force is calculated from the linear and spline interpolation and
is depicted in Fig. 7. Refering to Fig. 7, an empirical logarithmic relation has been determined which describes the spring
constant vs. force relationship necessary for the working point linearization.
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Figure 6: Force-displacement relation.
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Figure 7: Spring constant-force relation.

4.3 Electrodynamic Actuator

The electrodynamic actuator has its own dynamics. The experimental setup for determination of the actuator parameter
is depicted in Fig. 8. In order to obtain the transfer function for the actuator, the actuator is driven using a random signal.
The output is measured by a force cell which is placed between the actuator rod and the mass. The measured transfer
function is shown in Fig. 9, where the amplitude is given by the ratio of the force to the applied voltage.
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Figure 8: Experimental setup for the determination of
the actuator parameters.
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Figure 9: Transfer function of the actuator.

In order to identify the parameters, a model of the actuator is required. The model is shown in Fig. 10, where Fa represents



the actuator force, ma is the entire mass of the moving parts, Ua is the applied voltage, ka is the spring stiffness, and da

is the corresponding damping parameter [6]. A reaction mass is attached to a current-carrying coil moving in a magnetic

ma
x

S SN

ka da

Fa

Ua

coil

magnet

Figure 10: Model of the electrodynamic actuator.
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Figure 11: Output of an electrodynamic actuator.

field created by a permanent magnet. The moving part is attached to the chassis by a spring ka and a damper da (Fig.
10). The current in the coil is governed by

Ri +
di

dt
L = Ua − C1ẋ , (27)

where R is the resistance and L is the inductance of the coil, and −C1ẋ is the back electromotive voltage due to motion.
The equation of motion of the moving part is

maẍ + daẋ + kax = F (28)

where F is the electromagnetic force. The force is proportional to the current in the coil according to the relationship

F = C2i . (29)

Transforming Equations (27) to (29) into the Laplace domain and combining them yields(
mas

2 +
(

da +
C1C2

R + sL

)
s + K

)
x =

C2

R + sL
Ua, . (30)

The balance of linear momentum leads to Fa = −maẍ, or in the Laplace domain, Fa = −mas
2x. Combining with Equation

(30), one obtains the transfer function between the force Fa and the voltage Ua

Fa

Ua
=

−maC2s
2

maLs3 + (Rma + daL) s2 + (daR + C1C2 + kaL) s + kaR
. (31)

In order to identify the parameters, the model has to be updated to the measured transfer function. Fig. 11 shows
the modelled transfer function (dashed lines) as well as the measured transfer functions (solid lines). Neglecting the
inductance of the coil, using the measured resistance R = 6.34Ω, the moving mass ma = 342.75g and assuming C1 = 0,
one obtains for the case of applied arithmetic mean voltage the remaining parameters: ka = 10.2 N/mm, da = 20.7 Ns/m,
C2 = 1.47 103 N/mA.

4.4 Moments of Inertia

For identification of the moment of inertia the upper part of the system is supported by the outer springs only. Then the
eigenfrequencies of the system are determined. The eigenfrequency in the vertical direction is ωcz = 6.16 Hz, and the
rotational eigenfrequencies with respect to the x− and y-axes are ωϕcx = 7.28 Hz and ωϕcy = 9.91 Hz, respectively. Based
on the homogeneous differential equation of motion (20) with ka = 0 and Da = 0 (the system is not connected to the
actuators), the spring stiffness is k = ω2

czmsys/4 = 7282 N/m and the moment of inertias are Jxx = L2
2k/ω2

ϕcx
= 0.313

kgm2 and Jyy = L2
1k/ω2

ϕcy
= 0.228 kgm2.



5 Model Updating

The described model is updated by measurements. An impact hammer is used to apply impulsive excitation at the location
of the z�

i -coordinates (actuator attachment points on the upper plate), and accelerometers are used to measure the
resultant motion at the zi-coordinate locations (spring attachment points on the upper plate). The signals are processed
using an FFT analyzer, and the measured force displacement transfer functions are compared with that obtained using the
physical model. 16 different transfer functions are constructed by forming the ratio of ui, i = 1, ..., 4 to zj , j = 1, ..., 4.
Using Equations (1), (2), and (3), the generalized coordinates can be expressed in terms of zi, i = 1, ..., 4. Using the
balance of linear and angular momentum, Eqs. (16) and (17), respectively, Equation (20) can be expressed in terms of
zi. Hence all matrices have the dimension 3 x 4, since the balance of linear and angular momentum give three equations
as functions of four coordinates. A fourth condition is obtained using the constraint (Equation (4)). The resultant system
can be described by the equation

M�

⎡
⎢⎣

z̈1

z̈2

z̈3

z̈4

⎤
⎥⎦ + D�

⎡
⎢⎣

ż1

ż2

ż3

ż4

⎤
⎥⎦ + K�

⎡
⎢⎣

z1

z2

z3

z4

⎤
⎥⎦ = F�

u

⎡
⎢⎣

u1

u2

u3

u4

⎤
⎥⎦ + F�

d d + F�
dd ḋ . (32)

Neglecting the disturbance terms and assuming zero initial conditions, Equation (32) is transformed into Laplace domain

(
s2M� + sD� + K�

) ⎡
⎢⎣

Z1

Z2

Z3

Z4

⎤
⎥⎦ = F�

u

⎡
⎢⎣

U1

U2

U3

U4

⎤
⎥⎦ . (33)

Equation (33) can be recast in the form⎡
⎢⎣

Z1

Z2

Z3

Z4

⎤
⎥⎦ =

⎡
⎢⎣

ga gb gc gd

gb ga gd gc

gc gd ga gb

gd gc gb ga

⎤
⎥⎦

⎡
⎢⎣

U1

U2

U3

U4

⎤
⎥⎦ = G(s)

⎡
⎢⎣

U1

U2

U3

U4

⎤
⎥⎦ , (34)

where G(s) is the transfer matrix. Since the physical system is symmetric, the transfer matrix is symmetric as well. In
this research, the response function method (RFM) is used for model updating. An exhaustive description of updating
techniques is given in Ewins [3]. The parameters used for the updating procedure are the spring constant of the system, k,
the spring constant of the actuator, ka, and the damping parameter of the actuator, Da. It turns out that the measured
response functions and the updated response function fit well for values of k = 6958 N/m, ka = 8902 N/m, and Da = 20
Ns/m.

As an example, Fig. 12 shows the amplitude and phase frequency response functions of the measured and the modeled
updated transfer function G(s). Agreement between the experimental and model amplitude and phase characteristics is
good. This is an indication that the parameter errors and the structural errors of the model are small [3], and therefore
the model can be used in further considerations.

6 Control Techniques

6.1 State Variable Approach

Neglecting the disturbance and assuming that the mass matrix M is of full rank (m �= 0, Jxx �= 0, Jyy �= 0 ) one can
transfer the governing equation of motion (20) into the state-space representation,

d
dt

[
x̃
˙̃x

]
︸ ︷︷ ︸

ẋ

=
[

0 I
−M−1 K −M−1 D

]
︸ ︷︷ ︸

A

[
x̃
˙̃x

]
︸ ︷︷ ︸

x

+
[

0
Fu

]
︸ ︷︷ ︸

B

u
, (35)

where the state vector x contains not only the generalized coordinates zc, ϕcx und ϕcy, but also their derivatives with
respect to time. A is the system matrix, and B is the control matrix.

The output of the system can be described by using Equations (1) to (3) in order to relate the measured accelerations to
the generalized coordinates. Therefore the system output is

y = [z̈c, ϕ̈cx, ϕ̈cy]T =
[−M−1 K−M−1 D

]︸ ︷︷ ︸
C

x + Fu︸︷︷︸
D

u , (36)
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Figure 12: Amplitude and phase frequency response function.

where C is the output matrix and D is the feedthrough matrix.

6.2 Single Input Single Output (SISO)

6.2.1 Transfer Function

The transfer matrix G(s) can be obtained either by Laplace transformation of the governing equation of motion and
solving the subsequent linear set of equations or by using the state approach representation,

G(s) = C (sI − A)−1 B + D . (37)

6.2.2 Loop Shaping

In the following, a decentralized control concept is realized, in which each actuator is controlled by its corresponding sensor.

In section 5, the construction of the transfer matrix from the system inputs, ui, and outputs, zi, is described. Analogously,
it is possible to construct the transfer matrix from the z�

i -coordinates, which locate the sensors, and the system’s input
ui. The transfer matrix G�

sys(s) in this case is⎡
⎢⎣

Z�
1

Z�
2

Z�
3

Z�
4

⎤
⎥⎦ = G�

sys(s)

⎡
⎢⎣

U1

U2

U3

U4

⎤
⎥⎦ . (38)

By differentiating twice with respect to time, which is just the multiplication with the factor s2, one obtains the required
transfer matrix of the system input to the system output as

s2

⎡
⎢⎣

Z�
1

Z�
2

Z�
3

Z�
4

⎤
⎥⎦ =

⎡
⎢⎣

Y1

Y2

Y3

Y4

⎤
⎥⎦ = s2 G�

sys(s)︸ ︷︷ ︸
Gsys(s)

⎡
⎢⎣

U1

U2

U3

U4

⎤
⎥⎦ . (39)

For this control concept, only the diagonal terms of Gsys(s) are considered, since each actuator, which is collocated to
one sensor, responds primarily to inputs from its corresponding sensor. Fig. 13 shows the simulated transmissibility curves
for the passive system and loop shaping controller cases. In this context, transmissibility is understood as the displacement
ratio 4zc/(d1 + d2 + d3 + d4). It can be seen that by using the feedback controller, a significant improvement in the
transmissibility curve is obtained over a broad frequency range.



6.3 Multiple Input Multiple Output (MIMO)

6.3.1 Controllability and Observability

It is necessary to prove the controllability and observability before a controller is designed. A linear system ẋ = Ax + Bu,
x ∈ Rn is controllable if the rank of the controllability matrix S is n,

rankS = rank
[
B AB . . . An−1B

]
= n . (40)

Since this condition is already fulfilled by the matrix [B AB], the system is controllable. Similarly, the condition for
observability states that the system ẋ = Ax, y = Cx, x ∈ Rn is observable if the observability matrix PT has the rank
n,

rankPT = rank

⎡
⎢⎣

C
CA
. . .

CAn−1

⎤
⎥⎦ = n . (41)

This condition is fulfilled as well.

6.3.2 State Feedback with Observer

It is not always the case that all state variables can be calculated directly from the outputs. Therefore a state estimator or
observer strategy has been developed to estimate the state variables from a limited number of observations. The estimated
states ˙̂x would thus be governed using the system equation in the state variable approach (35) and (36)

˙̂x = F x̂ + Ey + Lu (42)

ŷ = Cx̂ + Du . (43)

The ’correction matrix’ E has to be chosen in a way that the estimated error e(t) = x(t) − x̂(t) approaches zero for
t → ∞. The dynamic equation of the error becomes

ė = ẋ− ˙̂x = (A− EC) x − F x̂ + (B− ED) u − Lu . (44)

Choosing F = (A − EC) and L = (B − ED), then the estimated error approaches zero for t → ∞ if the eigenvalues of
F = (A − EC) are in the left half plane. Using the principle of separation, the poles of the observability matrix can be
chosen independently from those in the state feedback matrix. The observer has to respond faster than the system with
state feedback. Furthermore, the observer poles should not be too far in the left half plane since the observer would act
as a differentiating system [1, 9]. Finally, the poles should have approximately the same distance from the origin.

A static state feedback u = −Kr x is chosen for control purposes. Using u ∈ Rq and x ∈ Rn the (q x n)-feedback matrix
Kr has n · q degrees of freedom. Equating the characteristic polynom with the target polynom,

det [sI − (A− BKr)] =
n∏

j=1

(s − sj) (45)

and comparing the coefficents, one obtains only n equations in spite of the n · q degrees of freedom. The further available
degrees of freedom can be used for the fulfillment of further design targets, e.g. to reduce the control activity or to simplify
the computation of the feedback matrix Kr.

6.3.3 Pole Placement

The pole placement is done using the command ’place’ in Matlab. For the controller, the poles are placed at one third of the
value of the oberver’s poles. The order of the multiple poles must not exceed the rank of the control matrix B. Fig. 13 shows
the transmissibility curves for the passive system, the loop shaping controller, and the pole placement controller cases.
The system having the pole placement controller outperforms the passive system. However, the loop shaping controller
performs better than the pole placement controller for the simulated excitation displacement. The performance of the loop
shaping controller has to be further examined for the case of different excitations.
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Figure 13: Simulated transmissibility curve of passive and active vibration isolation sytem with SISO and MIMO.

7 Conclusions

An active anti-vibration system has been investigated both theoretically and experimentally. Control performance demon-
strates that the multichannel active isolation system can effectively reduce the vibration of the equipment structure over
a wide frequency range. In future studies the three degree of freedom system model will be extended to a six degrees of
freedom system so that active vibration control in horizontal directions needs to be implemented as well. A model-based
control technique requires the accurate identification of model parameters. Therefore, it will also be necessary to develop
an on-line parameter identification technique to cope with the influence which different loads have on the vibration isolation
system. Furthermore, this research is restricted to excitation displacement. In future force excitation has also be considered.
Finally, the control concepts have to be further developed, especially with respect to adaptive control algorithms and with
respect to robust control.
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