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Abstract:   In the fields of high-resolution metrology and manufacturing, effective anti-

vibration measures are required to obtain precise and repeatable results.  This 
is particularly true when the amplitudes of ambient vibration and the 
dimensions of the investigated or manufactured structure are comparable, e.g. 
in sub-micron semiconductor chip production, holographic interferometry, 
confocal optical imaging, and scanning probe microscopy.  In the active anti-
vibration system examined, signals are acquired by extremely sensitive 
vibration detectors, and the vibration is reduced using a feedback controller to 
drive electrodynamic actuators.  This paper deals with the modeling and 
control of this anti-vibration system.  First, a six-degree-of-freedom rigid body 
model of the system is developed.  The unknown parameters of the unloaded 
system, including actuator transduction constants, spring stiffness, damping, 
moments of inertia, and the vertical position of the center of mass, are 
determined by comparing measured transfer functions to those calculated 
using the updated model.  Finally, two different strategies for actively 
controlling the vibration isolation system are considered.    
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1. INTRODUCTION 
 

Isolating a piece of delicate equipment from the vibration of a base 
structure is of practical importance in a number of engineering fields.  The 
quest for tighter production tolerances and higher resolution has led to more 
stringent requirements regarding ambient vibration levels.  In the majority of 
cases, the base supporting a piece of precision equipment is flexible and 
vibrates with an unpredictable waveform containing significant energy over 
a broad range of frequencies.  The active isolation of equipment from a 
vibrating base structure is considered in this paper.  Passive anti-vibration 
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mounts are widely used to isolate precision equipment from base vibration.  
Although conventional passive mounts offer good isolation at high 
frequencies, they suffer from vibration amplification at the mounted 
resonance frequency.  Generally, the best isolation performance is achieved 
by using an active system in combination with a passive mount, whereby the 
fundamental mounted resonance can be actively controlled without 
compromising the high frequency performance. 

Relevant active vibration isolation techniques can be found in several 
recent publications1-5.  This paper investigates a commercially available six-
degree-of-freedom (DOF) active vibration isolation system.  Active vibration 
isolation is achieved in the as-built system using a decentralized control 
scheme consisting of independent, analog “SISO” (single input, single 
output) controllers.  The ultimate goal of the study is to investigate 
alternative controllers, such as the  “MIMO” (multiple input, multiple 
output) controller, for use in vibration isolation.  However, successful 
implementation of such controllers first requires an accurate physical model 
of the vibration isolation system.  In section 2, a six-DOF rigid body model 
of the unloaded vibration isolation system is developed.  In section 3, model 
parameters associated with the unloaded vibration isolation system are 
determined using experimentally measured transfer functions.  In section 4, 
the SISO- and MIMO- control strategies are discussed.    
 
 

2.   MODELING 
 
2.1 System Model   
 

The vibration isolation system is essentially composed of two plates 
connected by springs and actuators.  A physical model of the vibration 
isolation system is depicted in figure 1.  Assuming that the motion of the 
upper plate undergoes rigid body motion only, then its motion can be 
described using six coordinates.  Referring to the upper plate, the coordinates 
x, y, and z are used to describe the linear motion of the plate, and the 
coordinates φx, φy, and φz are used to describe small rotations about the x, y, 
and z axes, respectively.  The coordinate system is located at the center of 
mass of the plate and is aligned with the plate’s principal axes.  Due to plate 
symmetry, the principal axes align with the geometric axes of symmetry, and 
the x and y coordinates of the center of mass coincide with the geometric 
center of the plate.  In a similar fashion, the motion of the lower plate is 
described using the coordinates xd, yd, zd, φx

d, φy
d, and φz

d.   
The upper plate is suspended above the lower plate with four springs, 

each of which is denoted by the stiffness ks.  The physical model contains 
additional stiffnesses, namely kt and kr, to model the transverse and rotational 
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stiffness, respectively, associated with the suspension springs.  Presumably, 
the motion of the lower plate is identical to the motion of the surface upon 
which the vibration isolation system rests.  The coordinates describing the 
motion of the lower plate can therefore be viewed as disturbance inputs.  The 
motion of the lower plate is coupled to the upper plate via the suspension, 
transverse, and rotational springs.  Four vertical actuators, A1-A4, and four 
horizontal actuators, A5-A8, are rigidly attached to the upper plate, and 
interact with the lower plate via point contact.  The vertical actuators can 
slide horizontally relative to the lower plate, and the horizontal actuators can 
slide vertically relative to the lower plate.  Active vibration control is 
realized by driving the actuators with the appropriate control inputs.  The 
coordinates L1-L3 are used to locate the suspension springs and the vertical 
actuators, and the coordinates L4-L6 are used to locate the horizontal 
actuators.   
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Figure 1.  Physical model of the vibration isolation system. 

 
2.2   Actuator Model 

 
The physical model of an actuator is depicted in figure 2.  The main 

components of the actuator are a stationary permanent magnet and a coil-
wrapped reaction mass ma which moves relative to the permanent magnet.  A 
damper having value da has been included to model energy losses, and a 
spring having stiffness ka has been included to model the spring-like 
restoring force between the permanent magnet and the reaction mass.  When 
a voltage V is applied to the coil, a current I will flow through it.  An 
electromotive force F proportional to the current (and therefore to the 
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applied voltage, assuming a purely resistive coil) is developed by the coil, 
thereby causing the reaction mass to accelerate.  

A simplified actuator model is depicted to the right in figure 2.  This is 
the actuator model which is implemented in the overall model for the 
vibration isolation system.  The reaction mass has been eliminated in the 
simplified actuator model since its motion is totally constrained in the 
vibration isolation system.  Additionally, the damping parameter da has been 
excluded from the simplified actuator model since its effects are negligible 
in comparison to other system energy loss mechanisms, such as the friction 
occurring at the points of contact between the lower plate and the actuators.    
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Figure 2.  Physical model of an actuator. 
 

2.3  Equations of Motion  
 

The unloaded vibration isolation system is composed of two rigid bodies:  
the lower plate and the upper plate.  The motion of the lower plate is 
presumably given, i.e., it has the same motion as the surface upon which it 
rests.  The following equations of motion6 can then be used to solve for the 
unknown motion of the upper plate:  
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The force balance is stated in Eq. (1), where m is the mass of the upper plate, 
and     is the acceleration of its mass center G.  The moment balance is stated 
in Eq. (2), where     is the rate of change of angular momentum about the 
center of mass, and Ixx, Iyy, Izz  are the principle moments of inertia.  The 
approximation in Eq. (2) is valid only for small angular displacements.  The 
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left hand side of Eqs. (1) and (2) are determined by summing force and 
moment contributions, respectively, from the various springs and actuators.  
The resultant equations of motion for the upper plate are: 
 
                          [ ] [ ] [ ] [ ] [ ] [ ]vEwKwDwKwDwM ++=++ dd

&&&& ,                    (3) 

                                    { }T
zyxzyxw φφφ= , 

                                 { }Tddddddd
zyxzyxw φφφ= , 

 
where v is the vector containing the input voltages applied to the actuators 
(the vector elements v1-v8 correspond to actuators A1-A8, respectively).  
Analysis details and expressions for the mass matrix [M], damping matrix 
[D], stiffness matrix [K], and actuator transduction matrix [E] are given by 
Beadle, et al.7.  The analysis assumes that the damping matrix is diagonal, so 
that the damping of a particular rigid body mode does not depend on the 
motion of another rigid body mode.  The individual entries of the damping 
matrix are determined experimentally.  The first two terms on the right hand 
side of Eq. (3) represent the disturbance excitation due to the motion of the 
lower plate.  The third term on the right hand side of Eq. (3) is the excitation 
generated by the actuators.     

The transfer function T relating displacement at an arbitrary location and 
in an arbitrary direction, to force input from the rth actuator has been derived 
by Beadle, et al.7.  The derivation assumes forced, harmonic, steady state 
motion and zero disturbance inputs,             .  
 
 
3.   PARAMETER IDENTIFICATION 

3.1 Experimental Setup 
 

The experimental setup for identifying the unknown parameters in the 
theoretical model is depicted in figure 3.  The unknown parameters include: 
spring stiffnesses, damping, actuator transduction constants, moments of 
inertia, and the vertical position of the upper plate’s center of mass.  The 
other constants required for the model are known:  L1=0.348 m, L2=0.3 m, 
L3=0.055 m, (L4+L5)=0.19 m, and mass m =19.3 kg.  An HP Paragon 
measurement system is configured to drive one or more of the actuators 
using a random voltage excitation V.  The excitation signal is amplified 
using the preamplifiers which are built into the commercial vibration 
isolation system.  In the diagram, the vertical actuators are denoted by        
A1-A4, and the horizontal actuators are denoted by A5-A8.  The response of 
the upper plate is measured using an accelerometer (Brüel & Kjær 4381) 
placed at one of the three measurement locations M1-M3.  The vibration 

0=dw
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isolation system actually has built-in accelerometers at each of the actuator 
locations.  In future efforts, these accelerometers will be used for the 
parameter identification procedure.  The accelerometer used in the current 
study can be oriented to measure acceleration in any of the three coordinate 
directions.  The acceleration signal is converted into displacement X using a 
signal conditioner before being received by the measurement system.  The 
measurement system then computes the X/V transfer function from the 
random displacement and voltage waveforms.  Division of the measured X/V 
transfer function by the appropriate actuator constant er results in the 
displacement-force transfer function X/F.    
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Figure 3.  Experimental setup for determining model parameters. 

3.2   Experimental Results 
 

The results of the parameter identification procedure for the unloaded 
vibration isolation system are summarized in  Table 1.  In the table, the 
actuation constants are denoted by e, the damping coefficients are denoted 
by d, and the moments of inertia are denoted by I.   A similar set of tests has 
been used to identify parameters for an arbitrarily loaded vibration isolation 
system7.  For explicative purposes, refer to test 5 in table 1.  For this test, the 
four actuators A1-A4 were driven, and the accelerometer was used to 
measure the motion in the z-direction at measurement location M3.  
Actuators A3 and A4 were driven 180o out of phase relative to actuators A1 
and A2.  This particular drive scheme excites pure rotational motion about 
the x axis.  Hence, the unknown moment of inertia and rotational damping 
about this axis can be determined by comparing the measured  transfer 
function with the theoretical transfer function. Specifically, the theoretical 
transfer function Z3/F1 is computed for several different values of Ixx and d4.  
An error function given by 
 

                                      ( ) ( )*

theoexptheoexp TTTTerror −⋅−=                                 (4) 
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is then calculated.  Here,     and     are the experimental and theoretical 
transfer functions, respectively, and the * operator denotes complex 
conjugation of individual vector entries.  The error function is calculated for 
values of the transfer functions in the frequency range 2.5-20 Hz.  Finally, 
the parameter values which minimize the error function are determined.   
 
 
Table 1.  Parameter identification results for the unloaded vibration isolation system.   

Test Actuator Displacement Parameter 
1 A1 z1     e1 = 6.59 N/V    |                             
2 A2 z1     e2 = 7.85 N/V    |    ks=11300 N/m 
3 A3 z1     e3 = 7.07 N/V    |    d3=275 Ns/m 
4 A4 z1     e4 = 8.10 N/V    |                             
5 (A1+ A2)- (A3+ A4) z3 Ixx=0.340 kgm2, d4=6.74 Ns/rad 
6 (A1+ A4)- (A2+ A3) z2 Iyy=0.259 kgm2, d5=3.48 Ns/rad 
7 (A1+ A4)- (A2+ A3) x1 L6=0.054 m 
8 A5 x1     e5 = 7.50 N/V    |                             
9 A6 x1     e6 = 7.89 N/V    |    kt=37600 N/m        

10 A7 x1     e7 = 6.65 N/V    |    d1=279 Ns/m          
11 A8 x1     e8 = 5.97 N/V    |                             
12 A5+ A7 x3 Izz=0.500 kgm2, kr=1590 N/rad 

d6=9.32 Ns/rad 

 
 
Comparison between the measured and theoretical transfer functions are 

depicted in figures 4-7 for selected test cases.  Overall agreement between 
experimental and theoretical curves is good, thereby giving confidence in the 
physical model and the parameter identification procedure.  The deviation 
between the curves at low frequency is caused by ground-induced motion of 
the lower plate and/or the limited low frequency response of the 
accelerometer. 
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Figure 4.   Experimental (⎯) and theoretical  
(     ) transfer functions for test case 1.      
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Figure 5. Experimental (⎯) and theoretical  
(     ) transfer functions for test case 5.   
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Figure 6.  Experimental (⎯) and theoretical  
(     ) transfer functions for test case 8.      
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Figure 7. Experimental (⎯) and theoretical 
(     ) transfer functions for test case 12.      

 
 
4. CONTROL STRATEGIES 

 
4.1  SISO Controller 
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Figure 8.  Experimental setup for measuring 
vertical transmissibility. 
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Figure 9. Measured transmissibility of 
the vibration isolation system with 
(active) and without (passive) control.   

  
The commercial vibration isolation system implements a decentralized 

SISO control strategy in which each of the actuators is controlled using 
feedback from a local acceleration sensor.  The local controllers are 
proportional-derivative controllers, and they are realized using analog 
circuitry.  The performance of the as-built vibration isolation system is 
assessed by measuring the transmissibilty.  The experimental setup for 
measuring vertical transmissibilty is depicted in figure 8.  As shown, a large 
base plate is driven vertically using random excitation.  The vertical motion 
Z1 of the base structure and the vertical motion Z2 of the upper plate in the 
vibration isolation system are measured using accelerometers.  A 
measurement system is then used to compute the transmissibilty function 
Z2/Z1 from the measured displacements.   The measured transmissibilty of 
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the vibration isolation system with (active) and without (passive) control are 
depicted in figure 9.  Clearly, the vibration isolation system with analog 
SISO control effectively eliminates vibrations at the mounted vertical 
resonance frequency of  ~10 Hz.   
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Figure 10.  Simulated vertical transmissibilty curves for various control cases. 
 
4.2  MIMO Controller 
 

Ignoring the disturbance inputs, the equation of motion for the upper 
plate, Eq. (3), can be cast into state-space form:  
 

                                   [ ] [ ] vu
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& .                          (5) 

 
For the MIMO controller, the state feedback law                   is assumed.  The 
elements in [K] are obtained using the pole placement method, and the 
elements of the state-space vector    are estimated from measured 
acceleration outputs using an observer8.  Simulated transmissibility curves 
for passive, SISO-controlled, and MIMO-controlled systems are depicted in 
figure 10.  The SISO controller outperforms the MIMO controller for low-
frequency vertical excitation.  In future simulations, the performance of the 
controllers will be compared for arbitrary excitation composed of vertical, 
horizontal, and angular disturbance inputs.  At higher frequencies, the 
structural response is dominated by inertial effects and is therefore only 
minimally influenced by disturbance and control inputs.  Hence, the SISO- 

[ ]xKu −=

x
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and MIMO- controlled systems have a similar response to the passive system 
at higher frequencies.     
 
 
5. CONCLUSIONS   
 

A six-DOF rigid body model for a commercially available vibration 
isolation system has been developed.  The parameters of the unloaded 
vibration isolation system, including actuator transduction constants, spring 
stiffness, damping, moments of inertia, and the vertical position of the center 
of mass, were determined by comparing theoretical and measured transfer 
functions.  The responses predicted by the model agreed well with the 
experimental measurements, thereby giving confidence in the model.  This 
work is important for model-based control techniques which require accurate 
identification of model parameters.  Future work will involve modification 
of the current test bed so that vertical, horizontal, and angular disturbance 
inputs can be used to perturb the vibration isolation system.  The SISO and 
MIMO controllers will be experimentally compared for the various 
disturbance input cases.  Other control concepts, including adaptive and 
robust control algorithms, will also be implemented and compared.      
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